

Activated Carbon

Mohammad Mahdi Bazri

Chemical and Biological Engineering Department University of British Columbia Vancouver, BC, Canada

December, 2011-Tehran, Iran

Adsorption

Certain components (adsorbate) of a flow are transferred to and held at surface of a solid (adsorbent)

Physical adsorption (weaker) Chemical adsorption (stronger)

Adsorbent

- High surface per unit mass (porous)

 Surface area (total surface/mass)
 Porosity (pore volume/total volume)

 External surface, macropores, mesopores,
 - micropores, and submicropores
- At equilibrium

Keq =
$$\frac{[adsorbed \ compound]}{[free \ sites][compound]}$$

Adsorption isotherm

- q= Mass of adsorbate/mass of adsorbent
- Concentration ratio
- Nature of adsorbate
- Nature of adsorbent

Adsorption isotherm

Effect of temperature

Concentration in the liquid $\mathbf{C}_{\mathbf{e}}$

Activated Carbon

- Obtained from organic materials (bituminous, almonds and coconut hulls, Wood, coal)
- Surface area: 700-1300 m² g⁻¹

10 gr activated carbon ~10.000 m²

1 city block =10.000 m²

Applications

- Natural Organic Matter, Organic micropollutants, etc.
- Residual amounts of inorganics e.g. nitrogen, sulfides and

heavy metals

- Taste and odor compounds (MIB and geosmin)
- Cyst such as giardia and cryptosporidium (0.5 micron)
- Ozone, H₂O₂, Chlorine and Chloramine

Natural Organic Matter

Problems for conventional treatment processes

- Precursors to chlorination disinfection byproducts
 - TTHMs (80 µg/L max)
 - HAA5 (60 µg/L max)
- Binding of heavy metals and pesticides
- Bacterial re-growth potential
- Biofilm formation

Natural Organic Matter

Problems for Advanced Oxidation Processes

- Ozone consumption
- Screening of UV
- •OH scavenging

Breaks down into smaller biodegradable compounds

Types of Activated Carbon

Granular Activated Carbon (GAC)

Biological Activated Carbon (BAC)

Powdered Activated Carbon (PAC)

Granular Activated Carbon (GAC)

d> 0.1mm, flow-through columns

Household water treatment (350-700 g)

- Post-filter contactors Longer contact times (15-20 minutes) follows filtration
- Filter adsorber Shorter contact time, moderate costs and removal
- BAC High capital cost

Removal of DOC, BDOC,

Removal of Disinfection by-products precursers

Water source	DOC (mg/L)	Media	O3 dose	Removal (%)	Reference
Seagahan, UK	NA ^b	Sand	3.1-4.8 mg O ₃ /L	25	[36]
Lake Vymwy, UK	2.4-4.8	Sand	1.1-2.5 mg O ₃ /L	26.5	[37]
Norsborg, Sweden	NA ^b	Sand	0.2-lmgO ₃ /mgTOC	20-30	[38]
River Dee, UK	3.0-7.9	Sand	0.5 mgO ₃ /mgTOC	28	[39]
Model Water	4.0-5.0 ^a	Sand	6.7 mgO ₃ /L	34-40	[40]
Plonia River, PL	7.8–11.6 ^a	GAC	1.64 mgO ₃ /mgTOC	39	[41]
Grand River, USA	5-7	GAC	NA	13-23	[42]
Miyun Reservoir	4.9-7.3	GAC	3 mg/L	33.4	[43]
Huangpu River	5.2-7.7	GAC	2.0-2.5 mg/L	31	[44]
Omerli Reservoir	2.9-4.9	GAC	No ozonation	47-72	This study
Model Water Plonia River, PL Grand River, USA Miyun Reservoir Huangpu River Omerli Reservoir	4.0-5.0 ⁻ 7.8-11.6 ^a 5-7 4.9-7.3 5.2-7.7 2.9-4.9	GAC GAC GAC GAC GAC	6.7 mg O ₃ /L 1.64 mg O ₃ /mg TOC NA 3 mg/L 2.0–2.5 mg/L No ozonation	34-40 39 13-23 33.4 31 47-72	[40] [41] [42] [43] [44] This study

DOC removals typically achieved by BAC columns in the literature.

^a In terms of TOC.

^b NA: Data not available.

Operation

Fixed bed

- Most common for GAC
- Parallel or series
- Down flow:
 - efficient elution, easier regeneration and back washing
- Headloss

Issues

- Efficiency reduction
- Bacterial growth
- Frequent filter change
- Contamination with pollutant
- Low maintenance
- absence of good monitoring parameters taste and flowrate

Biological Activated Carbon (BAC)

BAC

- Good support for microbial growth
- Empty bed contact time (EBCT) is the primary design parameter (< capital cost)</p>
- Better performance than sand filters due to rougher surface
- Short contact time (12-20 minutes)

BAC

- H₂O₂ removal (2-4 minutes)
- Nitrite removal (4-8 minutes)
- Limited applicability, pre oxidation is applied
- Inefficient in to remove refractory fractions
- Iong start up 3-5 months

Removal of TOC

BAC

BAC

DOM removal process shifted from physical adsorption to biodegradation between 30 and 54 weeks (after 40 weeks service).

Removal of Synthetic AOC (acetate)

Day 13

- Ozonation remarkably increased the AOC concentration
- The 6-year BAC was effective in removing AOC-P17
- Aged BAC vs. new BAC

Powdered Activated Carbon (PAC)

PAC

- d< 0.074 mm, stirred vessels, difficult to recover and regenerate. Large surface area
- Iower capital cost
- Effective for lower concentration
- Shorter contact time
- Effective for taste and odor control

PAC

- Dosage and CT impractical for TOC removal
- Can be applied to the effluent from biological treatment process
- Abrasion, carbon carryover
- Required removal by coagulation/filtration
- Slow NOM adsorption kinetics (size, SPAC)

PAC, Issues

Loss of capacity and adsorption sites

Regeneration

- Chemicals (oxidizing adsorbed materials)
- Steam cleansing
- Solvents
- Biological conversion
- Loss of capacity (4-10%)

PAC vs. S-PAC

Taste and odor removal

- 2-methylisoborneol (MIB) and geosmin
- Excellent removal in DOC presence
- Biodegradation affects MIB removal 10-20 ng/L
- PAC (less frequent) or sand filter-GAC (more frequent)
- DOC competes with MIB and geosmin
- Pre treatment will be valuable

Taste and odor removal

Geosmin

- trans-1,10-dimethyl-trans-9-decalol
- C₁₂H₂₂O
- K_h = 0.0023
- Odor Threshold Concentration (OTC) – 10 ppt
- MW = 182 g/mol
- Earthy Smell

Taste and odor removal

Geosmin Concentration in GAC Column

AC as pretreatment

- Removing organic upstream of the treatment process
- Oxidation processes
- Reverse Osmosis (organics, chlorine)
- IEX

AC as post-treatment

- Ozonation
- Oxidation processes
- IEX

AC as post-treatment

- Ozonation is for organic pollutant destruction/break down and biodegradability improvement.
- AC/O₃ combination OH• generation, large site for reaction
- O₃/BAC: Drinking water production, economic, efficient

Process	BDOC (mg/L)	BDOC removal values (mg/L)
BAC alone	1.12	0.76
O₃-BAC	2.31	1.56
AC/O3-BAC	2.45	1.75

Influent BDOC and its removal in subsequent BAC unit

AC as post-treatment

- Oxidation process : increased biodegradability (optimize)
- Typical Ozonation
 - Small TOC destruction
 - Increased polarity
 - HMW to LMW
- Biofiltration: Removal of BDOC

